Example: (pg. 622)

72% of union members are in favour of a certain change to (100) their conditions of employment. A random sample of five members is taken. Find:

(a) the probability that three members are in favour of the change in conditions.

(b) the probability that at least three members are in favour of the conditions.

binem cdf

trials:5 p:.72 x value:2

binomcdf(5,.72,) .1376478208 1-.1376478208 .8623521792

(c) the expected number of members in the sample that are in favour of the change.

$$E = n \cdot p$$

=(5)(0.72)
= 3.6

23D.3 – The Mean and Standard Deviation of a Binomial Distribution

Suppose X is a binomial random variable with parameters n and p, so $X \sim B(n, p)$.

The mean of X is $\mu = np$.

The standard deviation of *X* is $\sigma = \sqrt{np(1-p)}$.

The variance of X is $\sigma^2 = np(1-p)$.

Example:

A coin is tossed 5 times and X is the number of heads which occur. Find the mean, standard deviation and variance of the X-distribution.

$$n=5$$
 $p=\frac{1}{2}$ (Hor7)
 $mean$ Variance: 1.25
 $= 5(\frac{1}{2})$
 $= 2.5$
 $51. dev$
 $5=\sqrt{np(1-p)}$
 $=\sqrt{a.5(0.5)}$
 $=\sqrt{1.25} = 1.18$

- 1 Suppose $X \sim B(6, p)$. For each of the following cases:
 - i find the mean and standard deviation of the X-distribution
 - ii graph the distribution using a column graph
 - iii comment on the shape of the distribution.

$$x \sim B(6,0.2)$$

Mean

 $x = n\rho$
 $= 6(0.2)$
 $= 1.2$

Chapter

The normal distribution

Syllabus reference: 5.9

Contents:

- A The normal distribution
- B Probabilities using a calculator
- The standard normal distribution
 - (Z-distribution)
- Ouantiles or k-values

24A – The Normal Distribution

From Ch. 23: discrete random variables

- examined binomial probability distributions where X could take non-negative integer values, x = 0, 1, 2, 3, ...

For a **continuous** random variable X, x can be any real value.

Use a **probability density function** to define the probability distribution.

Probabilities are found be calculating areas under the probability density function curve.

For a continuous random variable X, the **probability density function** is a function f(x) such that $f(x) \ge 0$ on its entire domain.

If the domain of the function is $a \le x \le b$, then $\int_a^b f(x) dx = 1$.

The probability that X lies in the interval $c \leqslant X \leqslant d$ is $\mathbf{P}(c \leqslant X \leqslant d) = \int_{c}^{d} f(x) \ dx$.

For a continuous variable X, the probability that X is exactly equal to a particular value is zero:

$$P(X = x) = 0$$
 for all x.

For example, the probability that an egg will weigh exactly 72.9 g is zero.

If you were to weigh an egg on scales that weigh to the nearest 0.1 g, a reading of 72.9 g means the weight lies somewhere between 72.85 g and 72.95 g. No matter how accurate your scales are, you can only ever know the weight of an egg within a range.

So, for a continuous variable we can only talk about the probability that an event lies in an interval.

A consequence of this is that $P(c \le X \le d) = P(c < X \le d) = P(c \le X < d) = P(c < X < d)$.

This would not be true if X was discrete.

THE NORMAL PROBABILITY DENSITY FUNCTION

If X is normally distributed then its probability density function is

$$f(x) = rac{1}{\sigma\sqrt{2\pi}} e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2} \quad ext{for} \quad -\infty < x < \infty$$

where μ is the mean and σ^2 is the variance of the distribution.

We write $X \sim N(\mu, \sigma^2)$.

- The curve y = f(x), which is called a normal curve, is symmetrical about the vertical line x = μ.
- As x → ±∞ the normal curve approaches its asymptote, the x-axis.
- f(x) > 0 for all x.
- Since the total probability must be 1, ∫[∞] f(x) dx = 1.

 More scores are distributed closer to the mean than further away. This results in the typical bell shape.

THE GEOMETRIC SIGNIFICANCE OF μ AND σ

Differentiating
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

we obtain
$$f'(x) = \frac{-1}{\sigma^2 \sqrt{2\pi}} \left(\frac{x-\mu}{\sigma} \right) e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma} \right)^2}$$

f'(x) = 0 only when $x = \mu$, and this corresponds to the point on the graph when f(x) is a maximum.

Differentiating again, we obtain
$$f''(x) = \frac{-1}{\sigma^2 \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2} \left[\frac{1}{\sigma} - \frac{(x-\mu)^2}{\sigma^3} \right]$$

$$\therefore f''(x) = 0 \quad \text{when} \quad \frac{(x-\mu)^2}{\sigma^3} = \frac{1}{\sigma}$$

$$\therefore \quad (x-\mu)^2 = \sigma^2$$

$$\therefore \quad x-\mu = \pm \sigma$$

$$\therefore \quad x = \mu \pm \sigma$$

So, the points of inflection are at

$$x = \mu + \sigma$$
 and $x = \mu - \sigma$.

For a normal distribution with mean μ and standard deviation σ , the percentage breakdown of where the random variable could lie is shown below.

Notice that:

- $\approx 68.26\%$ of values lie between $\mu \sigma$ and $\mu + \sigma$
- ullet pprox 95.44% of values lie between $\,\mu-2\sigma\,$ and $\,\mu+2\sigma\,$
- $\approx 99.74\%$ of values lie between $\mu 3\sigma$ and $\mu + 3\sigma$.

Example:

In an Oreo factory, the masses of cookies are normally distributed with a mean of 40 g and a standard deviation of 2 g.

(a) Find the percentage of cookies with a mass between 36 g and 42 g.

(b) Find the probability that the mass of a cookie is between 38 g and 46 g.

(c) Find the value of k such that approximately 16% of the cookies are below k g.

24 B – Probabilities Using a Calculator

Need to use the calculator to find probabilities that are not just regions of width of σ from the mean.

Example:

Suppose
$$X \sim N(50, 3^2)$$
.

This means X is normally distributed with mean 50 and standard deviation 3.

Find:

(a)
$$P(40 \le X \le 65)$$

(b)
$$P(X \ge 35)$$

(c)
$$P(X \le 42)$$